From Computational Neuroscience

It’s not what it looks like: Baseline Shifts

Cook et al. 2013
The implantable device from Cook et al. 2013

I’ve just come back from the fantastic IWSP7: Epilepsy Mechanisms, Prediction and Control conference in Melbourne. Having apparently outgrown the initial meetings’ focus on seizure prediction, this year covered all aspects from computational models, intracranial devices, to imaging in epilepsy. For those who don’t know – Melbourne is a great place for such a conference, since Mark Cook and colleagues have managed a couple of years ago to pull off a clinical trial of implantable intracranial recording devices designed for long-term ambulatory recordings, in addition to the potential for responsive neuromodulation. The set-up can be seen on the right (an image the conference conveners seemed to love), and was a first in the world of seizure prediction. [1]

Read more

Moving on from the Seizure Reservoir

One of the most challenging and puzzling issues for both patients and clinicians is the apparent unpredictability of seizures. Beyond a few general statements of things that increase your chance of having a seizure, it is difficult (impossible) to pinpoint, why a seizure happens at exactly the time that it does. The issue becomes even more intriguing when there is not even a focal ‘epileptogenic’ zone – as for children with idiopathic generalised epilepsy, whose brains will look completely normal on brain scans, but will suffer apparently unprovoked seizures again and again. 

Richardson (2011)
Drawing from Richardson MP (2011) J Progr Biophys Mol Biol, 105:5-13, originally from Lennox (1941) Science and Seizures, New Light on epilepsy and Migraine. Harper Bros, NY

Read more